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Abstract. Determination of radiative fluxes in media containing real gases such as combustion products, atmospheric gases among 
others is usually a difficult task due to the strong dependence of the absorption coefficient on the wavenumber. In the CW model, we 
should solve the RTE in every spectral subinterval Dij, for j = 1,..., n and i = 1, 2, . . .p,   then it is necessary to solve n x p times the 
spectral form of the RTE for complete spectral integration. In this work the CW model is used with one numerical approximation 
technique based on additive properties of radiative intensity to reduce the solution of RTE to n new fractional gray gas DJ for 
complete spectral integration. The accuracy of the simplified technique and the algorithm was first examined for one-dimensional 
homogeneous media; the results are compared with line-by-line calculations and it is found that the CW model with the simplified 
technique is exact for the homogeneous media examined. The CW model is implemented in bi-dimensional enclosure containing real 
gases in isothermal cases too. The results obtained using the acceleration technique in CW model are the same as the results of 
original CW model. With this acceleration technique the CPU time decreases p times. 
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1. Introduction 
 

Calculating radiative transport through non-gray gases at high temperature is extremely difficult due to the strong 
dependence of the absorption coefficient on the wavenumber and it is necessary to use some real gas model for the 
spectral integration of the intensity field. Research activities directed towards modeling the radiative transport of non-
gray molecular gases using global methods dedicate special attention to the solution of the radiative transport problems 
in a high temperature gas medium (Taine and Soufiani, 1999).  

The method of the weighted sum of gray gases WSGG, proposed by Hottel and Sarofim (1967), was taken as the 
basis for the development of methods based upon the distribution functions of the global absorption coefficient. The 
WSGG model (Modest, 1991) was used for the first time to solve the radiative transport equation for the case of 
uniform medium and for the treatment with black frontiers. The full-spectrum correlated-K (FSCK) model (Modest and 
Zhang, 2000) was introduced for treating non-homogeneous medium and later extended to include non-homogeneous 
gas mixtures (Modest and Zhang, 2002; Zhang and Modest, 2002). This approach was recently extended for treatment 
of non-homogeneous gas mixtures with absorbing particles (Modest and Riazzi, 2005). The spectral line weighted 
(SLW) model (Denison and Webb, 1993) is based upon detailed spectral line data. Solovjov and Webb (2000) extended 
the SLW method to handle non-homogeneous gas mixtures by using one cumulative distribution function of the 
absorption coefficient calculated over the total spectrum and weighted by the Planck function. The methods ADF, 
(Riviere et al., 1996) and ADFFG (Pierrot et al., 1999) are similar to the SLW method and fictitious gas weights are 
calculated.  

Solovjov and Webb (2002) developed the CW model, which is a local spectrum correlated model. It was 
formulated to solve the equation of radiative transport in a medium of high temperature non-uniform gas. The spectral 
integration of the radiative transport equation is done by means of a new distribution function of the spectrum of gas 
absorption, called cumulative wavenumber. This new concept represents a local rather than the global correlation of the 
gas spectrum traditionally used. A local correction factor is introduced to take into account the spatial variations of the 
concentrations of species and the temperature of the gas that is calculated independently in each spectral interval. Later, 
Ismail and Salinas (2005) applied the CW model in a 2D enclosure filled with homogeneous, non-uniform and non-
isothermal gases coupled with the discrete ordinates method. Recently, Solovjov and Webb (2005) presented 
enhancements of the CW model, formalizing a mathematical definition and extending it to handle non-homogeneous 
mixture of gases with non-gray particles. 

It is true that the CW model is relatively simple in comparison with other models with respect to obtaining the 
model parameters. Still, some difficulties are found in fast and accurate numerical calculation. The present study 
presents an approach based on additive properties of the radiative intensity field to reduce the set of the transformed 
spectral radiative transfer equations generated by applying the CW model. 
 
2.  CW model 

 
For any fixed value of the absorption cross-section C and wavenumber η, the cumulative wavenumber function for 

a gas in the interval (ηo, ηf) is defined by the relation (Solovjov and Webb, 2002): 
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where, Cη is the absorption cross-section (cm2/molecule) and Cj is the supplementary cross-section (cm2/molecule) and 
αi and βi are the subinterval limits used in cumulative wavenumber function construction. 

The intervals (αi, βi) are obtained from the intersection of the absorption cross-section Cη with the Cη = C.  η*  is 
the largest wavenumber of the intersection for the case when, for the wavenumber variable η, the absorption cross-
section Cη  is less than the value C. L is the number of intervals where w(C, η) is creasing. Also, according to the 
definition, the cumulative wavenumber is a continuous non-decreasing function of η. More formally speaking the 
cumulative wavenumber function can be defined by (Solovjov and Webb, 2005): 
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where H (C – Cη ) is the Heaviside step-function. If one differentiates Eq. (2) one has. 
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This formula permits changing the integration with respect to an independent variable η over the spectral region 

defined by the molecule absorption spectrum to integration with respect to a cumulative wavenumber. 
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As is shown in fig (1), in the CW model the total range of the absorption cross-section Cη is subdivided into 

supplementary absorption cross-section of gray gases Cj, j = 1, ..., n, where n is the number of gray gases; and the range 
of the number of waves is subdivided in subintervals ∆i = [ηi-1, ηi ],   i = 1, 2,  . . .p,  where p is the number of 
subintervals. Also, it is considered that Hj  as the sum of all the spectral subintervals for which the real coefficient of 
absorption cross-section Cη lies between the supplementary absorption cross-section Cj and Cj-1; then it can be written 
as HJ = {η: CJ-1 ≤ Cη ≤ CJ }, for J= 1, . . .,n. The intersection of the two spectral subdivisions is used to define the 
modeling of the fractional gray gas Dij = ∆i ∩ HJ. The sum of the fractional gray gases establishes the complete range of 
number of wave. In CW model, we should solve the RTE in every subinterval Dij; then it is necessary to solve n x p 
times the spectral form of the RTE for complete spectral integration. 

The consideration of local spectral correlation establishes that  
 
W(Cj, s, η)- W(Cj-1, s, η) = ui,j(s) υi,j(η)    for η ∈ ∆ i                               (5) 
 
The integration of the spectral radiation intensity over the fraction Dij of a real gas by using the accumulated 

wavenumber concept described by Eq. (5) yields  
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Where Ji,j is considered as a fraction of the real gas intensity and ui,j (s) as a local correction factor for the real gas 

fractional intensity. The total radiation intensity is determined from the sum of all intensities of gases with the 
correction factor ui,j (s) as a weight 
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where ui, j (s) is defined by Eq. (5). 
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Figure 1. CW modeling by fractional gray gases. 
 

 
3. The radiative transport equation (RTE)  
 
3.1 The radiative transport equation (RTE) in gray media 

 
The radiative transport equation for an absorbing, emitting gray gas medium can be written as (Siegel and Howell, 

1992) 
 
( ) )r(I),r(I),r(I. bκκ +−=∇ ΩΩΩ                (8) 
 

where ),r(I Ω  is the radiation intensity in r, and in the direction Ω; , is the radiation intensity of the blackbody 
in the position r and at the temperature of the medium; κ is the gray medium absorption coefficient. For diffusely black 
surfaces the radiative boundary condition for Eq. (8) can be written as 

)r(Ib

 
)r(I),r(I bwall=Ω                      (9) 

 
where r lies on the boundary surface Γ, and the Eq. (9) is valid for  n.Ω > 0. ),r(I Ω  is the radiation intensity leaving 
the surface at the boundary condition. 
 
3.2  Additive properties consideration 

 
For an absorbing, emitting gray gas medium a set of radiative intensity fields can be described by the following 

equations: 
 
( ) )r(I),r(I),r(I. bAAA κκ +−=∇ ΩΩΩ                     (10.a) 
 
( ) )r(I),r(I),r(I. bBBB κκ +−=∇ ΩΩΩ                     (10.b) 
 
( ) ( ))r(I)r(I),r(I),r(I. bBbA ++−=∇ κκ ΩΩΩ                                 (10.c) 
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With the correspondent radiative black boundary conditions  
 

)r(I),r(I bwallAAwall =Ω                                        (11.a) 
 

)r(I),r(I bwallBBwall =Ω                                        (11.b) 
 

)r(I)r(I),r(I bwallBbwallAwall +=Ω                                       (11.c) 
 
It can be demonstrated that 
 

)r(I)r(I),r(I BA +=Ω                               (12) 
 
This additive property is easily verified invoking the superposition principle for non-homogeneous linear equations. 

Also, it can be easily extended to the mixture of homogeneous gases. This additive property is the key for utilizing a 
fast approximation technique to reduce the number of transformed spectral radiative transport equations that is 
generated by application of CW model for the complete integration of the radiative transport in real gas media. Also, if 
one can reduce the number of transformed spectral RTEs using the additive property, one can reduce the amplitude of 
the subintervals ∆i. 
 
3.3   The RTE in the fast CW model approximation 

 
The  radiative  transport  in an  absorbing  and  emitting medium  along    trajectory  s  in  the direction Ω  is given 

by Siegel and Howell (1992) 
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According to the CW spectral model, the spectral RTE, Eq. (13), is integrated over fractional gray gas 

wavenumbers Dij = {η: Cj-1 < Cη < Cj } ∩ ∆i 
In a similar manner as Eq. (13) the RTE in the CW model (Solovjov and Webb, 2002) 
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where κj is the absorption coefficient of gray gas determine as in Denison and Webb (1993). 

The term Jbi,j in Eq. (14) is the radiative source term at the black body fractional intensity which by using Eq. (4) 
can be written as (Ismail and Salinas, 2005) 
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Or finally by putting 
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One has 
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Examining the last equation, one notices that the last term in right side work as one source term for Ji,j where the 

factor fwi,j is a weight factor which depends on  wavenumber interval ∆i . 
Also, for homogeneous media (Solovjov and Webb, 2002),  ui,j (s) =1, one can to write 
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The radiation Planck function in Eq. (17) is evaluated at the local temperature. The sum of the Jbi,j (s) for all the 

fractional gray gases is equal to  
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One can rewrite the Eq. (19) as 
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By analogy with Eq. (10.c), one can calculate Jj by 
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This should be solved with the appropriate boundary condition in analogy with Eq. (11.c).  
The boundary condition for non-gray walls, diffusively emitting can be written as (Siegel and Howell, 1992) 
. 

)I)ˆ,(I w wbηw (Ts ηη ε=Ω             (22) 
 

where Ω is the direction vector along s, Sw define the point on the frontier surface and the subscript w refers to the 
quantity evaluated at the frontiers. εηw is the spectral emissivity of the frontier. Integration of  Eq. (22) yields 
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Discretization of the spectral radiative transport equation in the CW model in every gray gas (j) in discrete 

ordinates is made as in Ismail and Salinas (2005). When the equation of radiative transport, Eq. (21) together with the 
boundary condition Eq. (22) are solved for all the gray gases Jj, the total radiation intensity can be calculated in Eq. 
(18). The radiative source term for the gray gas j is determined in the discrete ordinates method from equation 
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where wm is the  weight of the angular quadrature and  
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And the total source term is 
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3.4 Spectral approximation 
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To solve numerically the RTE in the CW model it is necessary to chose ∆i in the wavenumber range, and by using 
the cumulative wavenumber functions the parameters   fw ij and ui,j should be calculated. Actually, when one calculates 
the cumulative wavenumber functions by application of the definition in Eq. (1), one obtains a set of discrete 
characteristic points and it is necessary to use step wise interpolating functions along the set of points. As can be seen in 
Fig. (2), within one subinterval ∆i there are a set of fractional gray gases subintervals Dij . As ∆i increases, the 
interpolating function is less accurate with the cumulative wavenumber function and the values of fw ij and ui,j will be 
less accurate and one loose precision in the calculations. Previously, the use of large ∆i as for example 100 cm-1 
(Solovjov and Webb, 2002; Ismail and Salinas, 2005) was justified because of the large computational time of original 
procedure necessary to solve the set of transformed spectral RTE in CW model. For example, if one has n=20 gray 
gases Cj and  p =100 subintervals ∆i one needs to solve 2000 simultaneous transformed spectral RTEs, and if  p = 400 
(for ∆i = 25 cm-1) it will be necessary to solve 8000 simultaneous RTEs in every iteration, and so on. But using the 
additive property in the radiative intensity field in this case, one can select the smallest subinterval ∆i and use more 
accurate interpolating functions to obtain more representative values of fw ij and ui,j  for the CW model without an 
increase of the computational time. Figure (2) shows the calculated cumulative wavenumber function Cj = C14, 
calculated for H20 at 2000 K for absorption cross-section coefficients in the range 10-25 < C < 10-17 cm2/molecule, 
between the interval ∆i = [ 4300 to 4400 cm-1 ]. The upper curve corresponds to C1 = 10-17 cm2/molecule while the 
bottom curv rresponds to C20 = 10-25 cm2/molecule in logarithm half decade increments. 
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Figure 2. Comparison of Interpolating functions of CW functions distribution gray gas Cj = C14, H2O at 2000 K. 

 
4.  Results and discussion 
 
4.1 Validation 1D 
 

Two problems presented in Solovjov and Webb (2000) are solved to test the new fast approach for the CW model. 
Problem 1. Consider the radiative heat exchange of a mixture of three combustion gases, H2O, CO2 and CO. The 

mixture is homogeneous and isothermal at 1000 K and 1 atm of total pressure occupying 1 m. wide space between two 
parallel plates. The molar fractions of H2O, CO2 and CO in the mixture are 0.2, 0.1 and 0.03 respectively. The frontiers 
are black and non-emitting. The distribution function of the black body absorption lines for H2O, CO2 and CO and its 
mixture are calculated by using the spectral database HITEMP (Hitran, 2005) at 1000 K. The solution of the radiative 
transport equation for the local spectral correlation is obtained by using the method of discrete ordinates with 20 gray 
gases, three different uniform spectral intervals: ∆i = 10 cm-1,  ∆i = 25 cm-1, ∆i = 100 cm-1, over a 0-10,000 cm-1 range of 
wavenumber, angular quadrature Tn 6, spatial grid of 250 volumes and the CLAM scheme for interpolating the intensity 
of radiation over the faces. Using the calculated intensities of the gray gases, one can determine the radiative source 
term for the mixture of real gases. Figure (3) shows the calculated radiative source term against distance for different ∆i 
compared with the obtained by the Line-by-Line method (Solovjov and Webb, 2000). One observes that as ∆i decreases, 
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the solution is more accurate  compared to the Line-by-Line solution; and for ∆i = 10 cm-1 the numerical solution of CW 
model and the Line-by-Line shows good agreement. 

Problem 2. Consider the same case as above but where the distance between plates is 5 m. Figure (4) shows the 
calculated radiative source term against distance for  20 gray gases, spectral intervals: ∆i = 10 cm-1, ∆i = 25 cm-1, ∆i = 
100 cm-1; angular quadrature Tn 6, spatial grid of 1250 volumes and the CLAM scheme for interpolating the radiation 
intensities. The results for different ∆i  are compared with the results of  Solovjov and Webb (2000) and  again one can 
observe that for smallest ∆i the numerical solution of the CW model is accurate as the Line-by-Line solution. 
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Figure 3. Comparison of the radiative dissipation source in isothermal gas mixture for 1 m  separated parallel plates 
for different ∆i with Line-by-Line solution (Solovjov and Webb, 2000)  
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Figure 4. Comparison of the radiative dissipation source in isothermal gas mixture for 5 m  separated parallel plates 
for different ∆i with Line-by-Line solution (Solovjov and Webb, 2000)  
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4.2 Application in 2D 
 

Problem 3.  This problem involves the radiative heat transport of a mixture of three gases of combustion. The 
mixture is homogeneous and isothermal at 1000 K and 1 atm total pressure occupying a two-dimensional square cavity 
of a side equal to 1 m. The molar fractions of H2O, CO2 and CO are 0.2, 0.1 and 0.03, respectively. The frontiers are 
black and non-emitting. The problem is solved using the spectral HITEMP database (Hitran, 2005) at 1000 K. Some 
numerical simulations were performed to investigate the convergence of the solution and the influence of refining the 
angular quadrature on the convergence of the solution, which is not shown here. It is found that for Tn 6 and higher or 
LC11 quadratures the solution does not change. Similarly, the effect of the size of the computational grid was 
investigated. As a result of the numerical tests, the investigation uses the angular LC11 quadrature with a grid of 20 x 
20. The solution of the radiative transport equation for the local spectral correlation is obtained by using the method of 
discrete ordinates with 20 gray gases. Three different uniform spectral intervals: ∆i = 10 cm-1,   ∆i = 25 cm-1, ∆i = 100 
cm-1, over a 0-10,000 cm-1 range of wavenumber are used. 

Figure (5) shows the comparison of the predicted radiative source at the middle cross section for different spectral 
intervals ∆i and compares the results with the result obtained by standard method for solving the CW model for ∆i = 100 
cm-1. For the fast approach only 20 transformed spectral RTEs in every iteration are solved; and for the standard method 
it is necessary to solve 20 x 100 transformed spectral RTEs. It can be observed that, as the spectral interval  ∆i  
decreases, the solution converges smoothly and the solution for  ∆i = 100 cm-1 is still far from converged solution. Also, 
it is found that the numerical results for the fast approach and for the standard method are closed. Notice that, if one 
uses the standard method of solution for CW method for ∆i = 10 cm-1 and 20 gray gases one will need to solve 20,000 
transformed spectral RTEs instead of 20 for fast approach in every iteration. Using the fast approach for solving the CW 
model, the computation time in this case is reduced approximately 1000 times.    
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Figure 5. Radiative source term surface in two-dimensional cavity with an isothermal gas mixture at 1000 K, cold 
black walls.  Comparison for different ∆i with the original CW method of solution. 

 
 
5. Conclusions 

 
A fast numerical approach to solve the transformed spectral RTE generated by application of the local spectrum 

model and the cumulative wavenumber distribution function is applied to a mixture of real gases, first in one-
dimensional geometry to validate the numerical procedure; the results agree very well with LBL solutions. Then it is 
applied to the two-dimensional cavity space with black boundaries in the isothermal case. Use of the fast approach for 
the CW model presented in this work permits reducing 100, 400 or 1000 times the computational time when used 
respectively in ∆i = 10 cm-1, ∆i = 25 cm-1, ∆i = 100 cm-1 over a 0-10,000 cm-1 range of wavenumber in comparison with 
the standard method of solution for the CW model for the same spectral interval ∆i. In the fast approach, the selection of 
small spectral intervals ∆i permit more accurate results and do not affect computational time. A study to extend this 
approach for non uniform media is in work. 
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